A high-quality Ixodes scapularis genome advances tick science

Photo of author

By Admin

  • Parola, P. & Raoult, D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin. Infect. Dis. 32, 897–928 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Honig, V. et al. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol. Ecol. 93, fix129 (2017).

  • Sonenshine, D. E. Range expansion of tick disease vectors in North America: implications for spread of tick-borne disease. Int. J. Environ. Res. Public Health 15, 478 (2018).

    Article 

    Google Scholar
     

  • Eisen, R. J. & Eisen, L. The blacklegged tick, Ixodes scapularis: an increasing public health concern. Trends Parasitol. 34, 295–309 (2018).

    Article 

    Google Scholar
     

  • Paddock, C.D., Lane, R.S., Staples, J.E. & Labruna, M.B. Changing Paradigms for Tick-borne Diseases in the Americas (National Academies of Sciences, Engineering, and Medicine, 2016).

  • Centers for Disease Control and Prevention. How many people get Lyme disease? (CDC, 2021).

  • Geraci, N. S., Spencer Johnston, J., Paul Robinson, J., Wikel, S. K. & Hill, C. A. Variation in genome size of argasid and ixodid ticks. Insect Biochem. Mol. Biol. 37, 399–408 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gulia-Nuss, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7, 10507 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Miller, J. R. et al. A draft genome sequence for the Ixodes scapularis cell line, ISE6. F1000Research 7, 297 (2018).

    Article 

    Google Scholar
     

  • Giraldo-Calderon, G. I. et al. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 43, D707–D713 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jia, N. et al. Large-scale comparative analyses of tick genomes elucidate their genetic diversity and vector capacities. Cell 182, 1328–1340.e13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cramaro, W. J., Hunewald, O. E., Bell-Sakyi, L. & Muller, C. P. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors 10, 71 (2017).

    Article 

    Google Scholar
     

  • Smalley, R. T. et al. Detection of Borrelia miyamotoi and Powassan virus lineage II (deer tick virus) from Odocoileus virginianus harvested Ixodes scapularis in Oklahoma. Vector Borne Zoonotic Dis. 22, 209–216 (2022).

    Article 

    Google Scholar
     

  • Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bickhart, D. M. et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat. Genet. 49, 643–650 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Villar, M. et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum Infection in tick cells. Mol. Cell Proteom. 14, 3154–3172 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pal, U., Kitsou, C., Drecktrah, D., Yas, O. B. & Fikrig, E. Interactions between ticks and lyme disease spirochetes. Curr. Issues Mol. Biol. 42, 113–144 (2021).


    Google Scholar
     

  • Kitsou, C., Fikrig, E. & Pal, U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol. 42, 554–574 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sajid, A. et al. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci. Transl. Med. 13, eabj9827 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, L. A., Radulovic, Z. M., Kim, T. K., Porter, L. M. & Mulenga, A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 6, 424–434 (2015).

    Article 

    Google Scholar
     

  • Narasimhan, S. et al. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE 2, e451 (2007).

    Article 

    Google Scholar
     

  • Narasimhan, S. et al. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLoS Pathog. 10, e1004278 (2014).

    Article 

    Google Scholar
     

  • Yang, X., Smith, A. A., Williams, M. S. & Pal, U. A dityrosine network mediated by dual oxidase and peroxidase influences the persistence of Lyme disease pathogens within the vector. J. Biol. Chem. 289, 12813–12822 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Contreras, M., Villar, M. & de la Fuente, J. A vaccinomics approach for the identification of tick protective antigens for the control of Ixodes ricinus and Dermacentor reticulatus infestations in companion animals. Front. Physiol. 10, 977 (2019).

    Article 

    Google Scholar
     

  • Machado, L. R. & Ottolini, B. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front. Immunol. 6, 115 (2015).

    Article 

    Google Scholar
     

  • De, S. et al. Epigenetic regulation of tick biology and vectorial capacity. Trends Genet. 37, 8–11 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kassis, J. A., Kennison, J. A. & Tamkun, J. W. Polycomb and trithorax group genes. Drosoph. Genet. 206, 1699–1725 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Beltran, S. et al. Transcriptional network controlled by the trithorax-group gene ash2 in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 3293–3298 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Kurtti, T. J. et al. Rickettsia buchneri sp. nov., a rickettsial endosymbiont of the blacklegged tick Ixodes scapularis. Int. J. Syst. Evol. Microbiol 65, 965–970 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nava, S., Guglielmone, A. A. & Mangold, A. J. An overview of systematics and evolution of ticks. Front. Biosci. 14, 2857–2877 (2009).

    Article 
    CAS 

    Google Scholar
     

  • de la Fuente, J. The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Exp. Appl. Acarol. 29, 331–344 (2003).

    Article 

    Google Scholar
     

  • Mans, B. J., Louw, A. I. & Neitz, A. W. Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 19, 1695–1705 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Kim, T. K. et al. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl. Trop. Dis. 14, e0007758 (2020).

    Article 

    Google Scholar
     

  • Di Venere, M. et al. Ixodes ricinus and Its endosymbiont Midichloria mitochondrii: a comparative proteomic analysis of salivary glands and ovaries. PLoS ONE 10, e0138842 (2015).

    Article 

    Google Scholar
     

  • Cotte, V. et al. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J. Proteom. 96, 29–43 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Iovinella, I., Ban, L., Song, L., Pelosi, P. & Dani, F. R. Proteomic analysis of castor bean tick Ixodes ricinus: a focus on chemosensory organs. Insect Biochem. Mol. Biol. 78, 58–68 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Garcia, G. R. et al. A transcriptome and proteome of the tick Rhipicephalus microplus shaped by the genetic composition of its hosts and developmental stage. Sci. Rep. 10, 12857 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Grabowski, J. M. et al. Changes in the proteome of Langat-infected Ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl. Trop. Dis. 10, e0004180 (2016).

    Article 

    Google Scholar
     

  • de la Fuente, J. et al. Tick–pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell Infect. Microbiol. 7, 114 (2017).


    Google Scholar
     

  • de la Fuente, J., Kocan, K. M. & Blouin, E. F. Tick vaccines and the transmission of tick-borne pathogens. Vet. Res. Commun. 31, 85–90 (2007).

    Article 

    Google Scholar
     

  • Rodriguez-Mallon, A. Developing anti-tick vaccines. Methods Mol. Biol. 1404, 243–259 (2016).

    Article 

    Google Scholar
     

  • Sprong, H. et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit. Vectors 7, 77 (2014).

    Article 

    Google Scholar
     

  • Valle, M. R. & Guerrero, F. D. Anti-tick vaccines in the omics era. Front. Biosci. 10, 122–136 (2018).

    Article 

    Google Scholar
     

  • Rego, R. O. M. et al. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit. Vectors 12, 229 (2019).

    Article 

    Google Scholar
     

  • Marques, A. R., Strle, F. & Wormser, G. P. Comparison of Lyme disease in the United States and Europe. Emerg. Infect. Dis. 27, 2017–2024 (2021).

    Article 

    Google Scholar
     

  • Madison-Antenucci, S., Kramer, L. D., Gebhardt, L. L. & Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 33, e00083-18 (2020).

    Article 

    Google Scholar
     

  • Smith, A. A. et al. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe 20, 91–98 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation vompleteness. Methods Mol. Biol. 1962, 227–245 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cenik, B. K. & Shilatifard, A. COMPASS and SWI/SNF complexes in development and disease. Nat. Rev. Genet. 22, 38–58 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clavier, A., Rincheval-Arnold, A., Colin, J., Mignotte, B. & Guenal, I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis 21, 239–251 (2016).

    Article 
    CAS 

    Google Scholar
     

  • O’Rourke, J. G. et al. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep. 4, 362–375 (2013).

    Article 

    Google Scholar
     

  • Wu, Q., Patocka, J. & Kuca, K. Insect antimicrobial peptides, a mini review. Toxins 10, 461 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rytz, R., Croset, V. & Benton, R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem. Mol. Biol. 43, 888–897 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. A. & Pal, U. Immunity-related genes in Ixodes scapularis-perspectives from genome information. Front. Cell Infect. Microbiol. 4, 116 (2014).

    Article 

    Google Scholar
     

  • Shaw, D. K. et al. Vector immunity and evolutionary ecology: the harmonious dissonance. Trends Immunol. 39, 862–873 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koci, J. et al. Antibodies against EGF-like domains in Ixodes scapularis BM86 orthologs impact tick feeding and survival of Borrelia burgdorferi. Sci. Rep. 11, 6095 (2021).

    Article 

    Google Scholar
     

  • Leave a Comment